Watch the code

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 from google.colab import files uploaded = files.upload() !pip install -q kaggle !mkdir -p ~/.kaggle !cp kaggle.json ~/.kaggle/ !chmod 600 ~/.kaggle/kaggle.json !ls -lha ~/.kaggle !kaggle datasets download -d manjilkarki/deepfake-and-real-images !unzip -q /content/deepfake-and-real-images.zip import matplotlib.pyplot as plt import numpy as np import os import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.optimizers import SGD from tensorflow.keras.callbacks import LearningRateScheduler from tensorflow.keras.constraints import MaxNorm from tensorflow.keras.utils import plot_model from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout, BatchNormalization from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping from sklearn.metrics import confusion_matrix, classification_report, accuracy_score import seaborn as sns from tensorflow.keras.regularizers import l1_l2 from sklearn.utils import class_weight from PIL import Image train_dir = '/content/Dataset/Train' test_dir = '/content/Dataset/Test' validation_dir = '/content/Dataset/Validation' IMG_SIZE = (256, 256) train_data = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode = 'categorical', batch_size = 32, image_size= IMG_SIZE) validation_data = tf.keras.preprocessing.image_dataset_from_directory(validation_dir, label_mode = 'categorical', batch_size = 32, image_size= IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode = 'categorical', batch_size = 32, image_size= IMG_SIZE, shuffle = False) for images, labels in train_data.take(1): # Visualiza las primeras 'n' imágenes n = 5 plt.figure(figsize=(20, 20)) for i in range(n): ax = plt.subplot(1, n, i + 1) plt.imshow(images[i].numpy().astype("uint8")) # Suponiendo que tienes dos clases y la etiqueta [1, 0] corresponde a 'Fake' y [0, 1] a 'Real' label = 'Fake' if np.argmax(labels[i].numpy()) == 0 else 'Real' print(np.argmax(labels[i].numpy()) == 0,np.argmax(labels[i].numpy())) plt.title("Class: " + label) plt.axis("off") plt.show() def normalize_image(image, label): # Normaliza los píxeles de la imagen al rango [0, 1] image = tf.cast(image, tf.float32) / 255.0 return image, label # Aplica la función de normalización a los conjuntos de datos train_data = train_data.map(normalize_image) validation_data = validation_data.map(normalize_image) test_data = test_data.map(normalize_image) model1 = Sequential([ # Primera capa convolucional Conv2D(filters=32, kernel_size=(11,11), strides=(4,4), activation='relu', input_shape=(256,256,3), kernel_constraint=MaxNorm(3)), BatchNormalization(), MaxPooling2D(pool_size=(2,2)), Dropout(0.25), # Segunda capa convolucional Conv2D(filters=64, kernel_size=(5,5), strides=(1,1), activation='relu', padding="same", kernel_constraint=MaxNorm(3)), BatchNormalization(), MaxPooling2D(pool_size=(2,2)), Dropout(0.25), # Tercera capa convolucional Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same", kernel_constraint=MaxNorm(3)), BatchNormalization(), MaxPooling2D(pool_size=(2,2)), Dropout(0.25), # Cuarta capa convolucional - reduciendo el tamaño del kernel Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same", kernel_constraint=MaxNorm(3)), BatchNormalization(), MaxPooling2D(pool_size=(2,2)), Dropout(0.25), # Aplanar la salida para las capas densas Flatten(), # Capa densa Dense(1024, activation='relu', kernel_constraint=MaxNorm(3)), Dropout(0.5), # Capa de salida Dense(2, activation='softmax') # Softmax para clasificación binaria ]) model1.summary() plot_model(model1,show_shapes=True,to_file='cnn_structur.png') # Parámetros iniciales epochs = 20 initial_lrate = 0.01 # Crear el optimizador SGD sin el parámetro decay sgd = SGD(learning_rate=initial_lrate, momentum=0.9, nesterov=False) # Función para calcular el decaimiento de la tasa de aprendizaje def decay(epoch, lrate): return initial_lrate / (1 + decay_rate * epoch) decay_rate = initial_lrate / epochs lrate_scheduler = LearningRateScheduler(lambda epoch: decay(epoch, initial_lrate)) # Compilar el modelo model1.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) history = model1.fit(train_data, validation_data=validation_data, epochs=epochs, callbacks=[lrate_scheduler]) fig = plt.figure() plt.plot(history.history['loss'], color='teal', label='loss') plt.plot(history.history['val_loss'], color='orange', label='val_loss') fig.suptitle('Loss', fontsize=20) plt.legend(loc="upper left") plt.show() fig = plt.figure() plt.plot(history.history['accuracy'], color='teal', label='accuracy') plt.plot(history.history['val_accuracy'], color='orange', label='val_accuracy') fig.suptitle('Accuracy', fontsize=20) plt.legend(loc="upper left") plt.show() test_accuracy = model1.evaluate(test_data) predicted_probs = model1.predict(test_data, verbose=1) predicted_labels = np.argmax(predicted_probs, axis=1) test_labels = [labels for _ , labels in test_data] test_labels = np.concatenate(test_labels, axis=0) test_labels_0 = np.argmax(test_labels,axis=1) cm = confusion_matrix(test_labels_0, predicted_labels) accuracy = accuracy_score(test_labels_0, predicted_labels) cm, accuracy class_names = ['Real', 'Fake'] report = classification_report(test_labels_0, predicted_labels, target_names=class_names) print(report) plt.figure(figsize=(3, 2)) class_names = ['Real', 'Fake'] heatmap = sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=True, yticklabels=True) heatmap.set_xticklabels(class_names, rotation=45, ha='right') heatmap.set_yticklabels(class_names, rotation=0) plt.xlabel('Predicted Labels') plt.ylabel('True Labels') plt.title('Confusion Matrix') plt.show() model1.save('mi_modelo_entrenado.tf')